Heliyon (Feb 2024)

Performance domains of bio-inspired and triangular lattice patterns to optimize the structures’ stiffness

  • Mathieu Bilhère-Dieuzeide,
  • Julien Chaves-Jacob,
  • Emmanuel Buhon,
  • Guillaume Biguet-Mermet,
  • Jean-Marc Linares

Journal volume & issue
Vol. 10, no. 4
p. e26001

Abstract

Read online

Mass reduction of mechanical systems is a recurrent objective in engineering, which is often reached by removing material from its mechanical parts. However, this material removal leads to a decrease of mechanical performances for the parts, which must be minimized and controlled to avoid a potential system failure. To find a middle-ground between material removing and mechanical performances), material must be kept only in areas where it is necessary, for example using stress-driven material removal methods. These methods use the stress field to define the local material removal based on two local parameters: the local volume fraction vf and the structural anisotropy orientation β. These methods may be based on different types of cellular structure patterns: lattice-based or bio-inspired. The long-term objective of this study is to improve the performance of stress-driven methods by using the most efficient pattern. For this purpose, this study investigates the influence of vf and β on the mechanical stiffness of three planar cellular structures called Periodic Stress-Driven Material Removal (PSDMR) structures. The first, taken from the literature, is bio-inspired from bone and based on a square pattern. The second, developed in this study, is also bio-inspired from bone but based on a rectangular pattern. The third is a strut-based lattice pattern well documented in the literature for its isotropic behavior. These three patterns are compared in this study in terms of relative longitudinal stiffness, obtained through linear elastic compressive tests by finite element analysis. It is highlighted that each PSDMR pattern has a specific domain in which it performs better than the two others. In future works, these domains could be used in stress-driven material removal methods to select the most adequate pattern or a mix of them to improve the performances of parts.

Keywords