Life (Jan 2022)

Response of <i>Arabidopsis thaliana</i> and Mizuna Mustard Seeds to Simulated Space Radiation Exposures

  • Ye Zhang,
  • Jeffrey T. Richards,
  • Alan H. Feiveson,
  • Stephanie E. Richards,
  • Srujana Neelam,
  • Thomas W. Dreschel,
  • Ianik Plante,
  • Megumi Hada,
  • Honglu Wu,
  • Gioia D. Massa,
  • Grace L. Douglas,
  • Howard G. Levine

DOI
https://doi.org/10.3390/life12020144
Journal volume & issue
Vol. 12, no. 2
p. 144

Abstract

Read online

One of the major concerns for long-term exploration missions beyond the Earth’s magnetosphere is consequences from exposures to solar particle event (SPE) protons and galactic cosmic rays (GCR). For long-term crewed Lunar and Mars explorations, the production of fresh food in space will provide both nutritional supplements and psychological benefits to the astronauts. However, the effects of space radiation on plants and plant propagules have not been sufficiently investigated and characterized. In this study, we evaluated the effect of two different compositions of charged particles-simulated GCR, and simulated SPE protons on dry and hydrated seeds of the model plant Arabidopsis thaliana and the crop plant Mizuna mustard [Brassica rapa var. japonica]. Exposures to charged particles, simulated GCRs (up to 80 cGy) or SPEs (up to 200 cGy), were performed either acutely or at a low dose rate using the NASA Space Radiation Laboratory (NSRL) facility at Brookhaven National Lab (BNL). Control and irradiated seeds were planted in a solid phytogel and grown in a controlled environment. Five to seven days after planting, morphological parameters were measured to evaluate radiation-induced damage in the seedlings. After exposure to single types of charged particles, as well as to simulated GCR, the hydrated Arabidopsis seeds showed dose- and quality-dependent responses, with heavier ions causing more severe defects. Seeds exposed to simulated GCR (dry seeds) and SPE (hydrated seeds) had significant, although much less damage than seeds exposed to heavier and higher linear energy transfer (LET) particles. In general, the extent of damage depends on the seed type.

Keywords