Neoplasia: An International Journal for Oncology Research (Aug 2011)
Interleukin 1α Sustains the Expression of Inflammatory Factors in Human Pancreatic Cancer Microenvironment by Targeting Cancer-Associated Fibroblasts
Abstract
The tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) is dynamic, with an extensive interaction between the stroma and tumor cells. The aim of this study was to delineate the cross talk between PDAC and cancer-associated fibroblasts (CAFs), with a focus on the mechanism creating the chronic inflammatory tumor milieu. We assessed the effects of the cross talk between PDAC and CAF cell lines on the creation and sustenance of the inflammatory tumor microenvironment in pancreatic cancer. The coculture of PDAC and CAF cell lines enhanced the levels of inflammatory factors including IL-1α, IL-6, CXCL8, VEGF-A, CCL20, and COX-2. CAFs were superior to tumor cells regarding the production of most inflammatory factors, and tumor cell-associated IL-1α was established as the initiator of the enhanced production of inflammatory factors through the binding of IL-1α to IL-1 receptor 1 (IL-1R1) expressed predominantly by CAFs. Furthermore, we found a correlation between IL-1α and CXCL8 expression levels in PDAC tissues and correlation between IL-1α expression and the clinical outcome of the patients. This confirmed an important role for the IL-1 signaling cascade in the creation and sustenance of a tumor favorable microenvironment. Neutralization of the IL-1α signaling efficiently diminished the cross talk-induced production of inflammatory factors. These data suggest that the cross talk between PDAC cells and the main stroma cell type, i.e. CAFs, is one essential factor in the formation of the inflammatory tumor environment, and we propose that neutralization of the IL-1α signaling might be a potential therapy for this cancer.