Metabolites (Apr 2025)

LC-MS/MS-Based Determination and Optimization of Linoleic Acid Oxides in <i>Baijiu</i> and Their Variation with Storage Time

  • Cheng Fang,
  • Xiaotong Zhuang,
  • Zhanguo Li,
  • Yongfang Zou,
  • Jizhou Pu,
  • Dong Wang,
  • Yan Xu

DOI
https://doi.org/10.3390/metabo15040246
Journal volume & issue
Vol. 15, no. 4
p. 246

Abstract

Read online

Background: Post-production storage plays a pivotal role in developing the characteristic flavor profile of Baijiu, a traditional alcoholic beverage in China. While aging markers remain crucial for quality authentication, the identification of reliable metabolic indicators for chronological determination requires further exploration. Methods: This study establishes a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology for quantifying five linoleic acid-derived oxidative metabolites in Baijiu: 9,12,13-trihydroxy-10(E)-octadecenoic acid (9,12,13-TriHOME), 9,10-Dihydroxy-12-octadecenoic acid (9,10-DiHOME), 9-oxo-(10E,12Z)-octadecadienoic acid (9-OxoODE), 9-hydroxy-(10E,12Z)-octadecadienoic acid (9-HODE) and 13-hydroxyoctadeca-(9Z,11E)-octadecadienoic acid (13-HODE). Results: The optimized protocol demonstrated exceptional sensitivity with limits of detection at 0.4 ppb through membrane-filtered direct dilution. Calibration curves exhibited excellent linearity (R2 > 0.9990) across 1.0–100.0 ppb ranges. Method validation revealed satisfactory recovery rates (87.25–119.44%) at three spiking levels (10/20/50 ppb) with precision below 6.96% RSD. Application to authentic samples showed distinct temporal accumulation patterns. Light-aroma Baijiu exhibited storage duration-dependent increases in all five oxides. Strong aroma variants demonstrated significant positive correlations for 9,12,13-TriHOME, 9,10-DiHOME, and 9-OxoODE with aging time. Conclusions: These findings systematically characterize linoleic acid oxidation products as potential aging markers, providing both methodological advancements and new insights into Baijiu aging mechanisms.

Keywords