Stem Cell Research & Therapy (Mar 2020)

High cholesterol induces apoptosis and autophagy through the ROS-activated AKT/FOXO1 pathway in tendon-derived stem cells

  • Kaiqun Li,
  • Ye Deng,
  • Ganming Deng,
  • Pengyu Chen,
  • Yutian Wang,
  • Hangtian Wu,
  • Zhiguo Ji,
  • Zilong Yao,
  • Xianrong Zhang,
  • Bin Yu,
  • Kairui Zhang

DOI
https://doi.org/10.1186/s13287-020-01643-5
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Hypercholesterolemia increases the risk of tendon pain and tendon rupture. Tendon-derived stem cells (TDSCs) play a vital role in the development of tendinopathy. Our previous research found that high cholesterol inhibits tendon-related gene expression in TDSCs. Whether high cholesterol has other biological effects on TDSCs remains unknown. Methods TDSCs isolated from female SD rats were exposed to 10 mg/dL cholesterol for 24 h. Then, cell apoptosis was assessed using flow cytometry and fluorescence microscope. RFP-GFP-LC3 adenovirus transfection was used for measuring autophagy. Signaling transduction was measured by immunofluorescence and immunoblotting. In addition, Achilles tendons from ApoE −/− mice fed with a high-fat diet were histologically assessed using HE staining and immunohistochemistry. Results In this work, we verified that 10 mg/dL cholesterol suppressed cell proliferation and migration and induced G0/G1 phase arrest. Additionally, cholesterol induced apoptosis and autophagy simultaneously in TDSCs. Apoptosis induction was related to increased expression of cleaved caspase-3 and BAX and decreased expression of Bcl-xL. The occurrence of autophagic flux and accumulation of LC3-II demonstrated the induction of autophagy by cholesterol. Compared with the effects of cholesterol treatment alone, the autophagy inhibitor 3-methyladenine (3-MA) enhanced apoptosis, while the apoptosis inhibitor Z-VAD-FMK diminished cholesterol-induced autophagy. Moreover, cholesterol triggered reactive oxygen species (ROS) generation and activated the AKT/FOXO1 pathway, while the ROS scavenger NAC blocked cholesterol-induced activation of the AKT/FOXO1 pathway. NAC and the FOXO1 inhibitor AS1842856 rescued the apoptosis and autophagy induced by cholesterol. Finally, high cholesterol elevated the expression of cleaved caspase-3, Bax, LC3-II, and FOXO1 in vivo. Conclusion The present study indicated that high cholesterol induced apoptosis and autophagy through ROS-activated AKT/FOXO1 signaling in TDSCs, providing new insights into the mechanism of hypercholesterolemia-induced tendinopathy. Graphical abstract High cholesterol induces apoptosis and autophagy through the ROS-activated AKT/FOXO1 pathway in tendon-derived stem cells.

Keywords