PLoS ONE (Jan 2019)

Systematic review of the accuracy of plasma preparation tubes for HIV viral load testing.

  • Robert Luo,
  • Jessica Markby,
  • Jilian Sacks,
  • Lara Vojnov

DOI
https://doi.org/10.1371/journal.pone.0225393
Journal volume & issue
Vol. 14, no. 11
p. e0225393

Abstract

Read online

Expanding access to HIV viral load testing is essential to improving the care and treatment of people living with HIV/AIDS and ending the AIDS epidemic. Though significant investments have been made in the past five years, many high burden, low resource countries continue to have viral load access rates below 50%. Plasma preparation tubes (PPTs) can simplify storage, transport, and preparation of plasma used for viral load testing. A systematic review was conducted to evaluate the accuracy of plasma preparation tubes for HIV viral load testing. Study results regarding the accuracy of PPT viral load measurements across various storage and transportation conditions were examined. The quality of evidence was evaluated using GRADE and QUADAS-2 criteria. The review identified 16 studies using PPTs with data from 6,141 individuals from 1995 to 2014. Overall the quality of evidence was rated as moderate, with unclear applicability for studies evaluating viral load assays that are no longer commercially available. Significantly elevated viral load results (>0.3 log copies/ml difference) have been observed with PPTs; however, when manufacturer handling instructions are followed, when plasma is aliquoted into a secondary tube, or when PPTs are centrifuged prior to testing, PPT results only differed from standard EDTA plasma testing using commercially available viral load assays by a range on average of -0.03 to +0.08 log copies/ml across studies. Although spuriously elevated viral load results have been observed with PPTs, following proper sample handing techniques have been shown to provide accurate results. PPTs, therefore, provide a high quality alternative specimen type for countries seeking solutions to infrastructure and specimen transportation challenges in an effort to scale-up viral load testing and achieve 90-90-90 targets.