Solid Isotropic Material with Penalization-Based Topology Optimization of Three-Dimensional Magnetic Circuits with Mechanical Constraints
Zakaria Houta,
Thomas Huguet,
Nicolas Lebbe,
Frédéric Messine
Affiliations
Zakaria Houta
Laboratoire Plasma et Conversion d’Energie (LAPLACE), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National Polytechnique de Toulouse (INPT), Université Paul Sabatier (UPS), 31062 Toulouse, France
Thomas Huguet
Laboratoire Plasma et Conversion d’Energie (LAPLACE), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National Polytechnique de Toulouse (INPT), Université Paul Sabatier (UPS), 31062 Toulouse, France
Nicolas Lebbe
Laboratoire Plasma et Conversion d’Energie (LAPLACE), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National Polytechnique de Toulouse (INPT), Université Paul Sabatier (UPS), 31062 Toulouse, France
Frédéric Messine
Laboratoire Plasma et Conversion d’Energie (LAPLACE), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National Polytechnique de Toulouse (INPT), Université Paul Sabatier (UPS), 31062 Toulouse, France
Topology optimization is currently enjoying renewed interest thanks to the recent development of 3D printing techniques, which offer the possibility of producing these new complex designs. One of the difficulties encountered in manufacturing topologically optimized magnetostatic structures is that they are not necessarily mechanically stable. In order to take this mechanical constraint into account, we have developed a SIMP-based topology optimization algorithm which relies on numerical simulations of both the mechanical deformation and the magnetostatic behavior of the structure. Two variants are described in this paper, respectively taking into account the compliance or the von Mises constraint. By comparing the designs obtained with those from magnetostatic optimization alone, our approach proves effective in obtaining efficient and robust designs.