Remote Sensing (Jan 2025)

Mapping Habitat Structures of Endangered Open Grassland Species (<i>E. aurinia</i>) Using a Biotope Classification Based on Very High-Resolution Imagery

  • Steffen Dietenberger,
  • Marlin M. Mueller,
  • Andreas Henkel,
  • Clémence Dubois,
  • Christian Thiel,
  • Sören Hese

DOI
https://doi.org/10.3390/rs17010149
Journal volume & issue
Vol. 17, no. 1
p. 149

Abstract

Read online

Analyzing habitat conditions and mapping habitat structures are crucial for monitoring ecosystems and implementing effective conservation measures, especially in the context of declining open grassland ecosystems in Europe. The marsh fritillary (Euphydryas aurinia), an endangered butterfly species, depends heavily on specific habitat conditions found in these grasslands, making it vulnerable to environmental changes. To address this, we conducted a comprehensive habitat suitability analysis within the Hainich National Park in Thuringia, Germany, leveraging very high-resolution (VHR) airborne, red-green-blue (RGB), and color-infrared (CIR) remote sensing data and deep learning techniques. We generated habitat suitability models (HSM) to gain insights into the spatial factors influencing the occurrence of E. aurinia and to predict potential habitat suitability for the whole study site. Through a deep learning classification technique, we conducted biotope mapping and generated fine-scale spatial variables to model habitat suitability. By employing various modeling techniques, including Generalized Additive Models (GAM), Generalized Linear Models (GLM), and Random Forest (RF), we assessed the influence of different modeling parameters and pseudo-absence (PA) data generation on model performance. The biotope mapping achieved an overall accuracy of 81.8%, while the subsequent HSMs yielded accuracies ranging from 0.69 to 0.75, with RF showing slightly better performance. The models agree that homogeneous grasslands, paths, hedges, and areas with dense bush encroachment are unsuitable habitats, but they differ in their identification of high-suitability areas. Shrub proximity and density were identified as important factors influencing the occurrence of E. aurinia. Our findings underscore the critical role of human intervention in preserving habitat suitability, particularly in mitigating the adverse effects of natural succession dominated by shrubs and trees. Furthermore, our approach demonstrates the potential of VHR remote sensing data in mapping small-scale butterfly habitats, offering applicability to habitat mapping for various other species.

Keywords