Melt-blowing technology is an important method for directly preparing micro-nanofiber materials by drawing polymer melts with high temperature and high velocity air flow. During the drawing process, the melt-blowing fiber not only undergoes a phase change, but also has an extremely complex coupling effect with the drawing airflow. Therefore, in the numerical calculation of the flow field, the existence of melt-blowing fibers is often ignored. In this paper, based on the volume of fluid method, a numerical study of the flexible fiber/air-coupling flow field of an annular melt-blowing die is carried out with the aid of computational fluid dynamics software. The results show that the pressure distribution in the different central symmetry planes of the ring die at the same time was basically the same. However, the velocity distribution may have been different; the velocity on the spinning line varied with time; the pressure changes on the spinning line were small; and velocity fluctuations around the spinning line could cause whiplash of the fibers.