E3S Web of Conferences (Jan 2021)

Mineralogy of hydrothermal breccia cement of Humpa Leu East porphyry copper-gold prospect, Sumbawa Island, Indonesia

  • Verdiansyah Okki,
  • Idrus Arifudin,
  • Setijadji Lucas Donny,
  • Sutopo Bronto,
  • Sukadana I Gde

DOI
https://doi.org/10.1051/e3sconf/202132504008
Journal volume & issue
Vol. 325
p. 04008

Abstract

Read online

Indonesia is a country that has several world-class copper-gold deposits, particularly in eastern Sunda arc. The Hu’u complex has several prospects in the surface as lithocap of extensive epithermal style alteration, but some were detected associated with porphyry beneath the surface. The study focuses on hydrothermal breccia cement as a factor influencing the porphyry system in the Hu’u district. The methods used is mineralogical analysis with petrography and μ-XRF elemental mapping on hydrothermal breccia samples. The Hu’u district is interpreted as a paleo-volcano; a member of the Old Volcanics Rocks Formation. The Humpa Leu East lithology consists of pre-volcanics unit (lava and pyroclastics), diorite, andesite-μ-diorite, and tonalitic intrusion at the depth. Hydrothermal alteration evolved from tonalite body to outward, consist of potassic, inner propyllitic and overprinted by phyllic and advanced argillic. Several phases of hydrothermal activities occur in this system, including the hydrothermal breccia phase associated with complex fluids. The hydrothermal cement of Humpa Leu East porphyry at least have three phases of mineralogical assemblages and possibly influencing the mineralization. The mineralogical assemblage of hydrothermal cement in HLE consists of quartz-feldspar-plagioclase-biotite as a high-temperature phase; then followed by epidote-sericite-chlorites-anhydrite-carbonates in medium temperature; there are aluminum-rich clay minerals interpreted as gibbsite. Mineralization occurs in three phases including chalcopyrite-magnetite, bornite-chalcopyrite and chalcopyrite-sphalerite phases. The occurrences of chalcopyrite at all phases indicate the stability of intermediate sulfidation proses in Humpa Leu and as a possible factor to answer the abundant copper in the Hu’u hydrothermal fluid system

Keywords