BMC Veterinary Research (Feb 2019)

Susceptibility breakpoint for Danofloxacin against swine Escherichia coli

  • Yuqi Yang,
  • Yixin Zhang,
  • Jiarui Li,
  • Ping Cheng,
  • Tianshi Xiao,
  • Ishfaq Muhammad,
  • Hongxiao Yu,
  • Ruimeng Liu,
  • Xiuying Zhang

DOI
https://doi.org/10.1186/s12917-019-1783-2
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Improper use of antimicrobials results in poor treatment and severe bacterial resistance. Breakpoints are routinely used in the clinical laboratory setting to guide clinical decision making. Therefore, the objective of this study was to establish antimicrobial susceptibility breakpoints for danofloxacin against Escherichia coli (E.coli), which is an important pathogen of digestive tract infections. Results The minimum inhibitory concentrations (MICs) of 1233 E. coli isolates were determined by the microdilution broth method in accordance with the guidelines in Clinical and Laboratory Standards Institute (CLSI) document M07-A9. The wild type (WT) distribution or epidemiologic cutoff value (ECV) was set at 8 μg/mL with statistical analysis. Plasma drug concentration data were used to establish pharmacokinetic (PK) model in swine. The in vitro time kill test in our study demonstrated that danofloxacin have concentration dependent activity against E.coli. The PK data indicated that danofloxacin concentration in plasma was rapidly increased to peak levels at 0.97 h and remained detectable until 48 h after drug administration. The pharmacodynamic cutoff (COPD) was determined as 0.03 μg/mL using Monte Carlo simulation. To the best of our knowledge, this is the first study to establish the ECV and COPD of danofloxacin against E.coli with statistical method. Conclusions Compared to the COPD of danofloxacin against E.coli (0.03 μg/mL), the ECV for E.coli seemed reasonable to be used as the final breakpoint of danofloxacin against E.coli in pigs. Therefore, the ECV (MIC ≤8 μg/mL) was finally selected as the optimum danofloxacin susceptibility breakpoint for swine E.coli. In summary, this study provides a criterion for susceptibility testing and improves prudent use of danofloxacin for protecting public health.

Keywords