Ecotoxicology and Environmental Safety (Jan 2024)
Global trends of waste-to-energy (WtE) technologies in carbon neutral perspective: Bibliometric analysis
Abstract
Waste-to-energy (WtE) technology is at the forefront of low-carbon municipal solid waste (MSW) treatment. MSW has been favoured by researchers in recent years due to its high potential to dispose of resources with WtE technology, which contributes to the carbon neutrality goal. However, there is a lack of research that integrates MSW WtE treatment from a global perspective and explores its future direction. Bibliometric methods are widely used because of their advantages in qualitative and quantitative literature information analysis. A comprehensive search was conducted in the Web of Science (WOS) Core Collection database, covering the period from 1990–2022, resulting in the collection of 702 articles. Subsequently, bibliometric software such as CiteSpace, VOSviewer, and Bibliometrix, were jointly employed for co-occurrence, co-citation, and cluster analyses, providing an in-depth qualitative and quantitative analysis of the research hotspots and development trends of WtE technology for MSW treatment. The research findings indicate a rapid growth in studies on carbon emission reduction through WtE technology for MSW treatment since 2015, with these related articles accounting for 50% of articles. Globally, China, the United States, Italy, and other countries were active research regions, with Chinese research institutions making the largest contributions. However, contributions from developing countries are limited. Furthermore, this study systematically elaborates on the research hotspots in this field. Finally, this study identified some frontier research hotspots and directions. Research on WtE technology primarily focuses on technological methods and policy management, particularly from the carbon neutrality perspective, emphasis WtE technology sustainability in reducing carbon emissions and achieving carbon neutrality goals. Promoting the use of assisted decision-making models in the MSW management process, and focusing on the conversion of food waste into valuable energy. It is hoped that these research directions will provide new ideas for the balanced and rapid development of WtE technology.