Analiz Riska Zdorovʹû (Sep 2017)
Experimental modeling of aerosols produced by microorganisms in working area air as risk factor exerting hazardous impacts on health of workers employed at biotechnological production
Abstract
Scientific foundation and practices in the sphere of hygienic and ecological standardization concerning biological factors of the environment have a number of peculiarities and are methodically less developed than chemical factors standardization. Efficient industrial control over maximum permissible concentrations of standardized microorganisms-producers in working area air is based on validated instrumental techniques of quantitative assessment. Our goal was to create experimental models for microorganisms-producers' aerosols of a multi-component microbe specimen in working area air as a risk factor causing impacts on health of workers employed at biotechnological production; another task was to work out a procedure for measuring Pseudomonas aurantiaca B-162/255.17concentration and cells and spores of Bacillus sp. BB58-3 strain in working area air. We gave grounds for a technology aimed at quantitative determination of microorganisms-producers in working area air in a modeling experiment; it was based on conventional stages and tech-niques accepted in microbiological practices, namely air samples taking via aspiration technique allowing for a volume taken; cultivation under conditions which are optimal for examined microorganisms-producers in a nutrient medium with reduced composition; calculation of evolved colonies with specific morphological features; morphologic identification of microorganisms and colonies; calculation of microorganisms' quantity on dishes with recalculation per 1 m3 of air. Bas-ing on the detected regular concentration dependences of microbe contamination dynamics in air we worked out a proce-dure for quantitative determination of microorganisms-producers; we also performed metrological estimate of opera-tional properties for assessing microorganisms-producers of a multi-component microbe specimen as a risk factor caus-ing hazardous impacts on health of workers employed at biotechnological production. We validated our measuring procedure in conformity with the requirements set forth by ISO.
Keywords