Endodontology (Jan 2020)
Dentinal element incorporation, interfacial adaptation, and pH change induced by bioceramic sealer, mineral trioxide aggregate-based sealer, and epoxy resin-based sealer – An in vitro, scanning electron microscopy electron probe X-ray microanalysis study
Abstract
Aim: Comparative evaluation of Dentinal Element Incorporation, Interfacial Adaptation, and pH change induced by Bio-ceramic Sealer, mineral trioxide aggregate (MTA)-based sealer, and Epoxy Resin-based sealer. Materials and Methods: Freshly extracted eighty mandibular premolar teeth were divided into four groups (n = 20) based on the sealer used for obturation, i.e., AH Plus (Group I), Endoseal MTA (Group II), EndoSequence BC Sealer (Group III), or Unfilled, unimmersed (Group IV), which served as the control. Specimens of Group I, II, and III were immersed in calcium and magnesium-free phosphate-buffered saline for 7 days. Specimens were sectioned longitudinally, and the ultrastructure of the dentine material interface and the elemental incorporation in the interfacial layer was analyzed using a wavelength dispersive scanning electron microscope-X-ray spectroscopy electron probe microanalyzer (SEM). The interfacial adaptation was measured using SEM. pH was calculated using pH meter. Statistical Analysis: Data were statistically analyzed using one-way ANOVA and Duncan's multiple range tests. Results: At the interface, both bio-ceramic materials formed a tag-like structure rich in calcium and silicon deposits, which were significantly higher in EndoSequence and Endoseal MTA, respectively. Endosequence BC sealer showed fewer interfacial gaps and the highest pH change as compared to the other groups. Conclusions: Bio-ceramic sealers showed better interfacial adaptation, element incorporation in the interfacial layer, and increased alkalinity of pH, leading to a superior marginal seal as compared to AH Plus and the control group.
Keywords