Journal of NeuroEngineering and Rehabilitation (Dec 2023)
Spatial mapping of posture-dependent resistance to passive displacement of the hypertonic arm post-stroke
Abstract
Abstract Background Muscles in the post-stroke arm commonly demonstrate abnormal reflexes that result in increased position- and velocity-dependent resistance to movement. We sought to develop a reliable way to quantify mechanical consequences of abnormal neuromuscular mechanisms throughout the reachable workspace in the hemiparetic arm post-stroke. Methods Survivors of hemiparetic stroke (HS) and neurologically intact (NI) control subjects were instructed to relax as a robotic device repositioned the hand of their hemiparetic arm between several testing locations that sampled the arm's passive range of motion. During transitions, the robot induced motions at either the shoulder or elbow joint at three speeds: very slow (6°/s), medium (30°/s), and fast (90°/s). The robot held the hand at the testing location for at least 20 s after each transition. We recorded and analyzed hand force and electromyographic activations from selected muscles spanning the shoulder and elbow joints during and after transitions. Results Hand forces and electromyographic activations were invariantly small at all speeds and all sample times in NI control subjects but varied systematically by transport speed during and shortly after movement in the HS subjects. Velocity-dependent resistance to stretch diminished within 2 s after movement ceased in the hemiparetic arms. Hand forces and EMGs changed very little from 2 s after the movement ended onward, exhibiting dependence on limb posture but no systematic dependence on movement speed or direction. Although each HS subject displayed a unique field of hand forces and EMG responses across the workspace after movement ceased, the magnitude of steady-state hand forces was generally greater near the outer boundaries of the workspace than in the center of the workspace for the HS group but not the NI group. Conclusions In the HS group, electromyographic activations exhibited abnormalities consistent with stroke-related decreases in the stretch reflex thresholds. These observations were consistent across repeated testing days. We expect that the approach described here will enable future studies to elucidate stroke's impact on the interaction between the neural mechanisms mediating control of upper extremity posture and movement during goal-directed actions such as reaching and pointing with the arm and hand.
Keywords