Advances in Materials Science and Engineering (Jan 2020)

The Effect of Static Blasting Materials on Coal Structure Changes and Methane Adsorption Characteristics

  • Xiao Cui,
  • Jiayong Zhang,
  • Liwen Guo,
  • Xuemin Gong

DOI
https://doi.org/10.1155/2020/2858621
Journal volume & issue
Vol. 2020

Abstract

Read online

Methane in coal seam is always under the dynamic process of adsorption and desorption. It has been demonstrated that the static blasting technology is an effective way to extract methane from coal. Although it is of great significance to understand the role of static blasting materials on methane extraction, the change of methane during static blasting is not well understood due to limited research studies. In this paper, we took the reaction pressure and heat from the hydration of the static blasting materials as the main factors. Microstructure changes in the static blasting materials and coal were analyzed by scanning electron microscopy, gas chromatography, infrared spectroscopy, and mercury injection. Changes of methane adsorption and adsorption rate before and after the static blasting were also measured. Our results demonstrated that the static blasting materials entered the microcracks of the coal body and the porosity of the coal was increased by heat expansion, improving methane migration. During the blasting process, methane began to desorb from the coal and its adsorption content was decreased. In contrast, the adsorption of methane was increased after the reaction. However, methane adsorption rate is higher than that of raw coal, indicating that the adsorbed methane is easier to convert into free methane, which is conducive to emission. This is of great significance to methane extraction and the safety of mines.