Water (Feb 2021)

Water Quality-Based Double-Gates Control Strategy for Combined Sewer Overflows Pollution Control

  • Zhongqing Wei,
  • Haidong Shangguan,
  • Jiajun Zhan,
  • Ruisheng Lin,
  • Xiangfeng Huang,
  • Lijun Lu,
  • Huifeng Li,
  • Banghao Du,
  • Gongduan Fan

DOI
https://doi.org/10.3390/w13040529
Journal volume & issue
Vol. 13, no. 4
p. 529

Abstract

Read online

The combined sewer overflows (CSO) pollution has caused many serious environmental problems, which has aroused a worldwide concern. Traditional interception-storage measures, which exhibit the disadvantages of the larger storage tank volume and the low concentration, cannot efficiently control the CSO pollution. To solve this problem, a water quality-based double-gate control strategy based on the pollution based real-time control (PBRTC) rule was proposed, and the chemical oxygen demand (COD) concentration was taken as the control index. A case study was carried out in Fuzhou, China as an example, in which the hydraulic and water quality model were constructed to evaluate two schemes. According to the results, compared to the traditional scheme, the double-gate scheme can not only reduce the storage tank volume by 1515 m3, but also increase the average COD interception rate by 1.84 times, thus ensuring the effective and stable operation of the facility. Furthermore, the traditional scheme and the double-gate scheme were evaluated under design rainfall beyond the design return period, which confirmed the high performance of the double-gate scheme in controlling CSO pollution.

Keywords