Forestry Research (Jan 2021)

A study of RNA-editing in Populus trichocarpa nuclei revealed acquisition of RNA-editing on the endosymbiont-derived genes, and a preference for intracellular remodeling genes in adaptation to endosymbiosis

  • Yiran Wang,
  • Lihu Wang,
  • Su Chen,
  • Song Chen

DOI
https://doi.org/10.48130/FR-2021-0020
Journal volume & issue
Vol. 1, no. 1
pp. 1 – 13

Abstract

Read online

RNA-editing is a post-transcriptional modification that can diversify genome-encoded information by modifying individual RNA bases. In contrast to the well-studied RNA-editing in organelles, little is known about nuclear RNA-editing in higher plants. We performed a genome-wide study of RNA-editing in Populus trichocarpa nuclei using the RNA-seq data generated from the sequenced poplar genotype, 'Nisqually-1'. A total of 24,653 nuclear RNA-editing sites present in 8,603 transcripts were identified. Notably, RNA-editing in P. trichocarpa nuclei tended to occur on endosymbiont-derived genes. We then scrutinized RNA-editing in a cyanobacterial strain closely related to chloroplast. No RNA-editing sites were identified therein, implying that RNA-editing of these endosymbiont-derived genes was acquired after endosymbiosis. Gene ontology enrichment analysis of all the edited genes in P. trichocarpa nuclei demonstrated that nuclear RNA-editing was primarily focused on genes involved in intracellular remodeling processes, which suggests that RNA-editing plays contributing roles in organellar establishment during endosymbiosis. We built a coexpression network using all C-to-U edited genes and then decomposed it to obtain 18 clusters, six of which contained a conserved core motif, A/G-C-A/G. Such a short core motif not only attracted the RNA-editing machinery but also enabled large numbers of sites to be targeted though further study is necessary to verify this finding.

Keywords