IEEE Photonics Journal (Jan 2018)

Reconfigurable Sorting of Nanoparticles on a Thermal Tuning Silicon Based Optofluidic Chip

  • Xiaofu Xu,
  • Yuming Dong,
  • Guanghui Wang,
  • Wenxiang Jiao,
  • Zhoufeng Ying,
  • Ho-pui Ho,
  • Xuping Zhang

DOI
https://doi.org/10.1109/JPHOT.2017.2781283
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 7

Abstract

Read online

We numerically demonstrate a scheme of optofluidic sorting of nanoparticles on a silicon-based lab-on-a-chip system, with reconfigurable and multilevel sorting size thresholds. Size-dependent sorting of nanoparticles originates from the size-dependent distribution of trapping potential wells, which determines whether a nanoparticle can jump back and forth between parallel waveguides in weakly coupling condition. In numerical modeling, we find that it is easier for larger ones to transfer and the size threshold is power ratio dependent. By setting a thermal tuning ring-assisted Mach-Zehnder interferometer ahead, we can adjust effectively the input power ratio of the parallel waveguides as well as the potential well distribution across them, working as a thermal tuning reconfigurable sorting unit. Consequently, a tree cascaded unit with different thresholds is also presented to be a reconfigurable multilevel sorting unit. The proposed design offers a simple and ultracompact scheme for the reconfigurable and multilevel optofluidic sorting of nanoparticles on thermo-optofluidics chip for the first time.

Keywords