EPJ Web of Conferences (Jan 2019)

High-energy neutrino interaction physics with IceCube

  • Klein Spencer

DOI
https://doi.org/10.1051/epjconf/201920809001
Journal volume & issue
Vol. 208
p. 09001

Abstract

Read online

Although they are best known for studying astrophysical neutrinos, neutrino telescopes like IceCube can study neutrino interactions, at energies far above those that are accessible at accelerators. In this writeup, I present two IceCube analyses of neutrino interactions at energies far above 1 TeV. The first measures neutrino absorption in the Earth, and, from that determines the neutrino-nucleon cross-section at energies between 6.3 and 980 TeV. We find that the cross-sections are 1.30 +0.21 -0.19 (stat.) +0.39 -0.43 (syst.) times the Standard Model crosssection. We also present a measurement of neutrino inelasticity, using νμ charged-current interactions that occur within IceCube. We have measured the average inelasticity at energies from 1 TeV to above 100 TeV, and found that it is in agreement with the Standard Model expectations. We have also performed a series of fits to this track sample and a matching cascade sample, to probe aspects of the astrophysical neutrino flux, particularly the flavor ratio.