BMC Chemistry (Jun 2023)
Synthesis, antimicrobial and antioxidant activity of triazole, pyrazole containing thiazole derivatives and molecular docking studies on COVID-19
Abstract
Abstract New series of biologically active triazole and pyrazole compounds containing 2, 4-disubstituted thiazole analogues (12a-l) were synthesized from p-hydroxy benzaldehyde and phenyl hydrazine in excellent yields and purity. All the synthesized compounds were unambiguously identified based on their spectral data analyses (IR, 1H-NMR, 13C-NMR spectra, and HRMS). The final derivatives were evaluated for their in vitro anti-microbial activity after thorough purification. Among all the tested compounds, the compound 12e, 12f and 12 k possess the highest growth inhibitory activity at MIC values of 4.8, 5.1 and 4.0 μg/ml respectively. The antioxidant properties of these compounds demonstrated and revealed remarkable activity compared to the standard antioxidant by using the DPPH free radical-scavenging assay. Moreover, molecular docking studies to evaluate the probable interactions with the catalytic domain of the gram-positive S. aureus topoisomerase IV enzyme may provide new insights for developing these new hybrids as potential antimicrobial agents. The binding affinities of compounds 12a-l were ranging from − 10.0 to − 11.0 kcal/mol with topoisomerase IV enzyme and with COVID-19 main protease binding affinities are ranging from − 8.2 to − 9.3 kcal/mol. These docking studies reveal that the compounds 12a-l could be the best inhibitors for the novel SARS Cov-2 virus and have more future in discovery of potent drug candidates.
Keywords