PLoS ONE (Jan 2014)
Phyllostomid bat occurrence in successional stages of neotropical dry forests.
Abstract
Tropical dry forests (TDFs) are highly endangered tropical ecosystems being replaced by a complex mosaic of patches of different successional stages, agricultural fields and pasturelands. In this context, it is urgent to understand how taxa playing critical ecosystem roles respond to habitat modification. Because Phyllostomid bats provide important ecosystem services (e.g. facilitate gene flow among plant populations and promote forest regeneration), in this study we aimed to identify potential patterns on their response to TDF transformation in sites representing four different successional stages (initial, early, intermediate and late) in three Neotropical regions: México, Venezuela and Brazil. We evaluated bat occurrence at the species, ensemble (abundance) and assemblage level (species richness and composition, guild composition). We also evaluated how bat occurrence was modulated by the marked seasonality of TDFs. In general, we found high seasonal and regional specificities in phyllostomid occurrence, driven by specificities at species and guild levels. For example, highest frugivore abundance occurred in the early stage of the moistest TDF, while highest nectarivore abundance occurred in the same stage of the driest TDF. The high regional specificity of phyllostomid responses could arise from: (1) the distinctive environmental conditions of each region, (2) the specific behavior and ecological requirements of the regional bat species, (3) the composition, structure and phenological patterns of plant assemblages in the different stages, and (4) the regional landscape composition and configuration. We conclude that, in tropical seasonal environments, it is imperative to perform long-term studies considering seasonal variations in environmental conditions and plant phenology, as well as the role of landscape attributes. This approach will allow us to identify potential patterns in bat responses to habitat modification, which constitute an invaluable tool for not only bat biodiversity conservation but also for the conservation of the key ecological processes they provide.