Sensors (Jul 2024)

A Novel Method for Identifying Frailty and Quantifying Muscle Strength Using the Six-Minute Walking Test

  • Yunjin Zhang,
  • Minoru Morita,
  • Tsunahiko Hirano,
  • Keiko Doi,
  • Xin Han,
  • Kazuto Matsunaga,
  • Zhongwei Jiang

DOI
https://doi.org/10.3390/s24144489
Journal volume & issue
Vol. 24, no. 14
p. 4489

Abstract

Read online

The six-minute walking test (6MWT) is an essential test for evaluating exercise tolerance in many respiratory and cardiovascular diseases. Frailty and sarcopenia can cause rapid aging of the cardiovascular system in elderly people. Early detection and evaluation of frailty and sarcopenia are crucial for determining the treatment method. We aimed to develop a wearable measuring system for the 6MWT and propose a method for identifying frailty and quantifying walking muscle strength (WMS). In this study, 60 elderly participants were asked to wear accelerometers behind their left and right ankles during the 6MWT. The gait data were collected by a computer or smartphone. We proposed a method for analyzing walking performance using the stride length (SL) and step cadence (SC) instead of gait speed directly. Four regions (Range I–IV) were divided by cutoff values of SC = 2.0 [step/s] and SL = 0.6 [m/step] for a quick view of the frail state. There were 62.5% of frail individuals distributed in Range III and 72.4% of non-frail individuals in Range I. A concept of a WMS score was proposed for estimating WMS quantitatively. We found that 62.5% of frail individuals were scored as WMS1 and 41.4% of the non-frail elderly as WMS4. The average walking distances corresponding to WMS1–4 were 207 m, 370 m, 432 m, and 462 m, respectively. The WMS score may be a useful tool for quantitatively estimating sarcopenia or frailty due to reduced cardiopulmonary function.

Keywords