Virus Research (Sep 2024)

Newly isolated Drexlerviridae phage LAPAZ is physically robust and fosters eradication of Klebsiella pneumoniae in combination with meropenem

  • Leonie Ziller,
  • Patricia Christina Blum,
  • Eva Miriam Buhl,
  • Alex Krüttgen,
  • Hans-Peter Horz,
  • Thaysa Leite Tagliaferri

Journal volume & issue
Vol. 347
p. 199417

Abstract

Read online

Due to the spread of multidrug resistance there is a renewed interest in using bacteriophages (briefly: phages) for controlling bacterial pathogens. The objective of this study was the characterization of a newly isolated phage (i.e. phage LAPAZ, vB_KpnD-LAPAZ), its antimicrobial activity against multidrug resistant Klebsiella pneumoniae and potential synergistic interactions with antibiotics. LAPAZ belongs to the family Drexlerviridae (genus: Webervirus) and lysed 30 % of tested strains, whereby four distinct capsular types can be infected. The genome consists of 51,689 bp and encodes 84 ORFs. The latent period is 30 min with an average burst size of 27 PFU/cell. Long-term storage experiments show that LAPAZ is significantly more stable in wastewater compared to laboratory media. A phage titre of 90 % persists up to 30 min at 50 ˚C and entire phage loss was seen only at temperatures > 66 ˚C. Besides stability against UV-C, antibacterial activity in liquid culture medium was consistent at pH values ranging from 4 to 10. Unlike exposure to phage or antibiotic alone, synergistic interactions and a complete bacterial eradication was achieved when combining LAPAZ with meropenem. In addition, synergism with the co-presence of ciprofloxacin was observed and phage resistance emergence could be delayed. Without co-addition of the antibiotic, phage resistant mutants readily emerged and showed a mixed pattern of drug sensitivity alterations. Around 88 % became less sensitive towards ceftazidime, meropenem and gentamicin. Conversely, around 44 % showed decreased resistance levels against ciprofloxacin. Whole genome analysis of a phage-resistant mutant with a 16-fold increased sensitivity towards ciprofloxacin revealed one de novo frameshift mutation leading to a gene fusion affecting two transport proteins belonging to the major facilitator-superfamily (MFS). Apparently, this mutation compromises ciprofloxacin efflux efficiency and further studies are warranted to understand how the non-mutated protein might be involved in phage-host adsorption.

Keywords