Remote Sensing (Oct 2024)

Modeling of Biologically Effective Daily Radiant Exposures over Europe from Space Using SEVIRI Measurements and MERRA-2 Reanalysis

  • Agnieszka Czerwińska,
  • Janusz Krzyścin

DOI
https://doi.org/10.3390/rs16203797
Journal volume & issue
Vol. 16, no. 20
p. 3797

Abstract

Read online

Ultraviolet solar radiation at the Earth’s surface significantly impacts both human health and ecosystems. A biologically effective daily radiant exposure (BEDRE) model is proposed for various biological processes with an analytical formula for its action spectrum. The following processes are considered: erythema formation, previtamin D3 synthesis, psoriasis clearance, and inactivation of SARS-CoV-2 virions. The BEDRE model is constructed by multiplying the synthetic BEDRE value under cloudless conditions by a cloud modification factor (CMF) parameterizing the attenuation of radiation via clouds. The CMF is an empirical function of the solar zenith angle (SZA) at midday and the daily clearness index from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) measurements on board the second-generation Meteosat satellites. Total column ozone, from MERRA-2 reanalysis, is used in calculations of clear-sky BEDRE values. The proposed model was trained and validated using data from several European ground-based spectrophotometers and biometers for the periods 2014–2023 and 2004–2013, respectively. The model provides reliable estimates of BEDRE for all biological processes considered. Under snow-free conditions and SZA < 45° at midday, bias and standard deviation of observation-model differences are approximately ±5% and 15%, respectively. The BEDRE model can be used as an initial validation tool for ground-based UV data.

Keywords