Comparison of individualized behavioral predictions across anatomical, diffusion and functional connectivity MRI
Leon Qi Rong Ooi,
Jianzhong Chen,
Shaoshi Zhang,
Ru Kong,
Angela Tam,
Jingwei Li,
Elvisha Dhamala,
Juan Helen Zhou,
Avram J Holmes,
B. T. Thomas Yeo
Affiliations
Leon Qi Rong Ooi
Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
Jianzhong Chen
Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
Shaoshi Zhang
Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
Ru Kong
Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
Angela Tam
Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
Jingwei Li
Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
Elvisha Dhamala
Yale University, Departments of Psychology and Psychiatry, New Haven, CT, United States; Kavli Institute for Neuroscience, Yale University, New Haven, CT, United States
Juan Helen Zhou
Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
Avram J Holmes
Yale University, Departments of Psychology and Psychiatry, New Haven, CT, United States; Wu Tsai Institute, Yale University, New Haven, CT, United States
B. T. Thomas Yeo
Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore; Corresponding author at: CSC, TMR, ECE, N.1 & WisDM, National University of Singapore, Singapore
A fundamental goal across the neurosciences is the characterization of relationships linking brain anatomy, functioning, and behavior. Although various MRI modalities have been developed to probe these relationships, direct comparisons of their ability to predict behavior have been lacking. Here, we compared the ability of anatomical T1, diffusion and functional MRI (fMRI) to predict behavior at an individual level. Cortical thickness, area and volume were extracted from anatomical T1 images. Diffusion Tensor Imaging (DTI) and approximate Neurite Orientation Dispersion and Density Imaging (NODDI) models were fitted to the diffusion images. The resulting metrics were projected to the Tract-Based Spatial Statistics (TBSS) skeleton. We also ran probabilistic tractography for the diffusion images, from which we extracted the stream count, average stream length, and the average of each DTI and NODDI metric across tracts connecting each pair of brain regions. Functional connectivity (FC) was extracted from both task and resting-state fMRI. Individualized prediction of a wide range of behavioral measures were performed using kernel ridge regression, linear ridge regression and elastic net regression. Consistency of the results were investigated with the Human Connectome Project (HCP) and Adolescent Brain Cognitive Development (ABCD) datasets. In both datasets, FC-based models gave the best prediction performance, regardless of regression model or behavioral measure. This was especially true for the cognitive component. Furthermore, all modalities were able to predict cognition better than other behavioral components. Combining all modalities improved prediction of cognition, but not other behavioral components. Finally, across all behaviors, combining resting and task FC yielded prediction performance similar to combining all modalities. Overall, our study suggests that in the case of healthy children and young adults, behaviorally-relevant information in T1 and diffusion features might reflect a subset of the variance captured by FC.