Cailiao gongcheng (Aug 2022)

Research status of crack inhibition via grain refinement of high-strength aluminum alloys fabricated by selective laser melting

  • LIU Xiaohui,
  • LIU Yunzhong

DOI
https://doi.org/10.11868/j.issn.1001-4381.2022.000160
Journal volume & issue
Vol. 50, no. 8
pp. 1 – 16

Abstract

Read online

High-strength aluminum alloys (2××× and 7×××, etc.) are widely used in aerospace, automobile and other fields because of their high specific strength and good machinability. With the development of high thrust-weight ratio engine and automobile lightweight technology, the demand for lightweight structural materials is increasing. Meanwhile, parts also present the "thin-walled, hollow and composite" tendency gradually, and the traditional processing methods of high-strength aluminum alloy are increasingly difficult to meet the requirements. As a common metal additive manufacturing (AM) technology, selective laser melting (SLM) is a great potential manufacturing technology for complex parts. SLM is expected to become an emerging technology to expand the application of high-strength aluminum alloys. However, due to their poor casting and welding properties, high-strength aluminum alloys easily produce the periodic hot cracks and coarse columnar grains during SLM, leading to unsatisfactory mechanical properties. Grain refinement is the key to overcome the inherent hot-tearing crack of SLMed high-strength aluminum alloys. The research progress in microstructure and mechanical property control of SLMed high-strength aluminum alloys in recent years was reviewed. The mechanical properties of alloys with different compositions were summarized. Importantly, the main strategies to suppress hot-crack formation in SLMed high-strength aluminum alloys were highlighted, including optimization of SLM process parameters and grain refinement by microalloying or addition of nanoparticles. It was pointed out that the main issue of SLMed high-strength aluminum alloys was the change of alloy composition on the comprehensive properties and heat treatment process was still unclear. The development trends were forecasted, such as designing new high-strength aluminum alloys and evaluating their comprehensive performances, using post-treatment process and other means to further improve the comprehensive performances of the alloys, and designing special grain refiners for SLM and investigating refinement mechanism.

Keywords