Scientific Reports (Oct 2020)

Numerical model of hybrid mode-locked Tm-doped all-fibre laser

  • Aleksandr Donodin,
  • Vasilii Voropaev,
  • Daniil Batov,
  • Dmitrii Vlasov,
  • Vladimir Lazarev,
  • Mikhail Tarabrin,
  • Aleksandr Khegai,
  • Mikhail Likhachev

DOI
https://doi.org/10.1038/s41598-020-74194-7
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Ultrafast Tm-doped fibre lasers have been actively studied for the last decade due to their potential applications in precise mid-IR spectroscopy, LIDARs, material processing and more. The majority of research papers is devoted to the comparison between a numerical modelling and experimental results; however, little attention is being paid to the comprehensive description of the mathematical models and parameters of the active and passive components forming cavities of Tm-doped all-fibre lasers. Thus, here we report a numerical model of a stretched-pulsed Tm-doped fibre laser with hybrid mode-locking and compare it with experimental results. The key feature of the developed numerical model is employment of the experimentally measured dispersion coefficients and optimisation of some model parameters, such as the bandwidth of the spectral filter spectral filtering and the saturation power of the active fibre, for a conformity with the experiment. The developed laser emits 331.7 fs pulses with a 23.8 MHz repetition rate, 6 mW of average power, 0.25 nJ of pulse energy, and a 21.66 nm spectral bandwidth at a peak wavelength of 1899.5 nm. The numerical model characteristics coincide with experimentally achieved spectral width, pulse duration, and average power with inaccuracy of 4.7%, 5.4%, and 22.9%, respectively. Moreover, in the discussion of the work the main possible reasons influencing this inaccuracy are highlighted. Elimination of those factors might allow to increase accuracy even more. We show that numerical model has a good agreement with the experiment and can be used for development of ultrafast Tm-doped fibre laser systems.