Communications Biology (Apr 2024)

q-Diffusion leverages the full dimensionality of gene coexpression in single-cell transcriptomics

  • Myrl G. Marmarelis,
  • Russell Littman,
  • Francesca Battaglin,
  • Donna Niedzwiecki,
  • Alan Venook,
  • Jose-Luis Ambite,
  • Aram Galstyan,
  • Heinz-Josef Lenz,
  • Greg Ver Steeg

DOI
https://doi.org/10.1038/s42003-024-06104-w
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Unlocking the full dimensionality of single-cell RNA sequencing data (scRNAseq) is the next frontier to a richer, fuller understanding of cell biology. We introduce q-diffusion, a framework for capturing the coexpression structure of an entire library of genes, improving on state-of-the-art analysis tools. The method is demonstrated via three case studies. In the first, q-diffusion helps gain statistical significance for differential effects on patient outcomes when analyzing the CALGB/SWOG 80405 randomized phase III clinical trial, suggesting precision guidance for the treatment of metastatic colorectal cancer. Secondly, q-diffusion is benchmarked against existing scRNAseq classification methods using an in vitro PBMC dataset, in which the proposed method discriminates IFN-γ stimulation more accurately. The same case study demonstrates improvements in unsupervised cell clustering with the recent Tabula Sapiens human atlas. Finally, a local distributional segmentation approach for spatial scRNAseq, driven by q-diffusion, yields interpretable structures of human cortical tissue.