PLoS ONE (Jan 2021)

On the stability of queues with the dropping function.

  • Andrzej Chydzinski

DOI
https://doi.org/10.1371/journal.pone.0259186
Journal volume & issue
Vol. 16, no. 11
p. e0259186

Abstract

Read online

In this paper, the stability of the queueing system with the dropping function is studied. In such system, every incoming job may be dropped randomly, with the probability being a function of the queue length. The main objective of the work is to find an easy to use condition, sufficient for the instability of the system, under assumption of Poisson arrivals and general service time distribution. Such condition is found and proven using a boundary for the dropping function and analysis of the embedded Markov chain. Applicability of the proven condition is demonstrated on several examples of dropping functions. Additionally, its correctness is confirmed using a discrete-event simulator.