IEEE Access (Jan 2020)
Method for Classifying a Noisy Raman Spectrum Based on a Wavelet Transform and a Deep Neural Network
Abstract
Because it is relatively difficult in practice to classify the Raman spectrum under baseline noise and additive white Gaussian noise environments, this paper proposes a new framework based on a wavelet transform and deep neural network for identification of noisy Raman spectra. The framework consists of two main engines. Wavelet transform is proposed as the framework front end for transforming the 1-D noise Raman spectrum to two-dimensional data. The two-dimensional data are fed to the framework back end, which is a classifier. The optimum classifier is chosen by implementing several traditional machine learning (ML) and deep learning (DL) algorithms, and we investigate their classification accuracy and robustness performances. The four chosen MLs are naive Bayes (NB), a support vector machine (SVM), a random forest (RF) and a k-nearest neighbor (KNN), and a deep convolution neural network (DCNN) was chosen as a DL classifier. Noise-free, Gaussian noise, baseline noise, and mixed-noise Raman spectra were applied to train and validate the ML and DCNN models. The optimum back-end classifier was obtained by testing the ML and DCNN models with several noisy Raman spectra (10-30 dB noise power). Based on the simulation, the accuracy of the DCNN classifier is 9% higher than that of the NB classifier, 3.5% higher than the RF classifier, 1% higher than the KNN classifier, and 0.5% higher than the SVM classifier. In terms of robustness to mixed noise scenarios, the framework with the DCNN back end showed superior performance compared with the other ML back ends. The DCNN back end achieved 90% accuracy at 3 dB SNR, while the NB, SVM, RF, and K-NN back ends required 27 dB, 22 dB, 27 dB, and 23 dB SNR, respectively. In addition, in the low-noise test dataset, the F-measure score of the DCNN back end exceeded 99.1%, and the F-measure scores of the other ML engines were below 98.7%.
Keywords