Energies (Oct 2021)

Impact of Weather Conditions on the Operation of Power Unit Cooling Towers 905 MWe

  • Zbigniew Buryn,
  • Anna Kuczuk,
  • Janusz Pospolita,
  • Rafał Smejda,
  • Katarzyna Widera

DOI
https://doi.org/10.3390/en14196412
Journal volume & issue
Vol. 14, no. 19
p. 6412

Abstract

Read online

The paper presents the results of measurements and calculations concerning the influence of weather conditions on the operation of wet cooling towers of 905 MWe units of the Opole Power Plant (Poland). The research concerned the influence of temperature and relative humidity of air, wind and power unit load on the water temperature at the outlet from the cooling tower, the level of water cooling, cooling efficiency and cooling water losses. In the cooling water loss, the evaporation loss stream and the drift loss stream were distinguished. In the analyzed operating conditions of the power unit, for example, an increase in Tamb air by 5 °C (from 20–22 °C to 25–27 °C) causes an increase in temperature at the outlet of the cooling tower by 3–4 °C. The influence of air temperature and humidity on the level of water cooling ΔTw and cooling efficiency ε were also found. In the case of ΔTw, the effect is in the order of 0.1–0.2 °C and results from the change in cooling water temperature and the heat exchange in the condenser. The ε value is influenced by air temperature and humidity, which determine the wet bulb temperature value. Within the range of power changes of the unit from 400 to 900 MWe, the evaporated water stream m˙ev, depending on the environmental conditions, increases from 400–600 tons/h to the value of 1000–1400 tons/h. It was determined that in the case of the average power of the unit at the level of 576.6 MWe, the average values of the evaporation and drift streams were respectively 0.78% and 0.15% of the cooling water stream. Using statistical methods, it was found that the influence of wind on the level of water cooling, cooling efficiency and cooling water losses was statistically significant.

Keywords