Journal of Agricultural Machinery (Jun 2023)
Predicting Whole-body Vibration-based on Linear Regression Models and Determining Permissible Exposure Time of Tractor Operator
Abstract
IntroductionThe permissible exposure time to vibration for the operator is one of the key factors in maintaining the operator's health while optimizing machinery and equipment. The tractor studied was the ITM475, manufactured in Iran. The purpose of this study was to calculate the operator's permissible vibration exposure time while using the tractor to ensure the driver can maintain good bodily health.Materials and MethodsIn this study, experiments were conducted using a 3-axis vibration meter based on the ISO 2631 standard. The obtained data were analyzed through a factorial experiment using 18 treatments and 3 replications. The factors studied were engine rotation speed (at three levels of 1000, 1500, and 2000 rpm), road type (dirt and asphalt), and gear position (at three levels of 1, 2, and 3).Results and DiscussionVarious total vibration models were obtained for the tractor, and their determination coefficient varied from 90.11% for gear No. 3 on an asphalt road to 100% for gear No. 1 on an asphalt road and gear No. 2 on a dirt road. The maximum whole-body vibration, and consequently the minimum permissible exposure time, was observed for gear No. 3 at an engine rotation speed of 2000 rpm on a dirt road, which was 1.49 and 1.16 hours, respectively.ConclusionThe maximum whole-body vibration experienced during an 8-hour tractor-driving session was measured at 0.85 m s-2. It is important to note that the permissible exposure time decreases as vibration levels increase, and it reaches a limit of 1.16 hours. To ensure drivers adhere to these permissible exposure times across various driving conditions, measures must be implemented to reduce tractor vibration and minimize its transmission to the driver. By reducing overall tractor vibration and minimizing its impact on the driver, it becomes possible to increase the permissible exposure time for drivers.
Keywords