The therapeutic effect of Yinqiaosan decoction against influenza A virus infection by regulating T cell receptor signaling pathway
Danting Li,
Zekun Wang,
Wenlei Wang,
Zhihui Zheng,
Hailin Wei,
Qin Su,
Mengmeng Yang,
Yimeng Zhao,
Xinyuan Zhang,
Xiaocong Yu,
Pinghu Zhang,
Yachun Shu
Affiliations
Danting Li
Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
Zekun Wang
Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
Wenlei Wang
Institute of Translational Medicine &Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225009, China
Zhihui Zheng
Institute of Translational Medicine &Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225009, China
Hailin Wei
Institute of Translational Medicine &Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225009, China
Qin Su
Institute of Translational Medicine &Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225009, China
Mengmeng Yang
Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
Yimeng Zhao
Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
Xinyuan Zhang
Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
Xiaocong Yu
Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
Pinghu Zhang
Institute of Translational Medicine &Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225009, China; Corresponding author. Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China.
Yachun Shu
Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Seaside Rehabilitation Hospital, Lianyungang, 222042, China; Corresponding author. Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
Background: Yinqiaosan decoction (YQSD), a traditional Chinese medicinal recipe, has been employed to treat influenza in China for approximately 300 years. Objective: Our study aimed to explore the mechanisms of YQSD against influenza via in vivo and in vitro experimental studies. Study design: and methods UHPLC-Q-TOF-MS/MS was utilized to examine the substances of the YQSD. The chemical components of YQSD detected by UHPLC-Q-TOF-MS/MS were used for network pharmacology analysis. The antiviral effect of YQSD in vivo was investigated. The potential mechanisms of YQSD in combating influenza, which were predicted from network pharmacology analysis, were validated in vitro. Results: By use of UHPLC-Q-TOF-MS/MS, 97 compounds were identified from YQSD. Network pharmacology analysis revealed that the therapeutic effect of YQSD against influenza may be associated with the regulation of T cell receptors (TCR) and Phosphoinositide 3-Kinase (PI3K)- protein kinase B (Akt) signaling pathways. Treatment with YQSD significantly prolonged the mean survival time of the mice and reduced lung injury due to the influenza A virus in vivo. It was discovered that YQSD efficiently inhibited the expression of inflammation-related cytokines. Moreover, YQSD has been found to significantly reduce the expression levels of cluster of differentiation 3 (CD3), monocyte chemoattractant protein-1 (MCP-1), and H1N1 virus nucleoprotein (NP), and prevent the decrease of epithelial cadherin (E-cadherin) protein. In addition, YQSD can inhibit the phosphorylation of the zeta chain of T cell receptor-associated protein kinase 70 (ZAP70) and PI3K proteins in vitro. Conclusion: The capacity of YQSD to suppress viral multiplication and inflammatory response by modulating T cell immunity may explain its effect against influenza viral pneumonia, which may involve the regulation of TCR and PI3K signaling pathways.