Geoscientific Model Development (Jan 2021)

Numerical study of the effects of initial conditions and emissions on PM<sub>2.5</sub> concentration simulations with CAMx v6.1: a Xi'an case study

  • H. Xiao,
  • Q. Wu,
  • X. Yang,
  • X. Yang,
  • L. Wang,
  • H. Cheng

DOI
https://doi.org/10.5194/gmd-14-223-2021
Journal volume & issue
Vol. 14
pp. 223 – 238

Abstract

Read online

A series of model sensitivity experiments was designed to explore the effects of different initial conditions and emissions in Xi'an in December 2016; Xi'an is a major city in the Fenwei Plain, which is a key area with respect to air pollution control in China. Three methods were applied for the initial condition tests: a clean initial simulation, a restart simulation, and a continuous simulation. In the clean initial simulation test, the C00, C06, C12, C18, and C24 sensitivity experiments were conducted to explore the effect of the intercepted time periods used. The results of these experiments showed that the fine particulate matter (PM2.5) model performance was better when the start time of the intercepted time periods was delayed. For experiments C00 to C24, the absolute mean bias (MB) decreased from 51.07 to 3.72 µg m−3, and the index of agreement (IOA) increased from 0.49 to 0.86, which illustrates that the model performance of C24 is much better than that of C00. The R1120 and R1124 sensitivity experiments were used to explore the restart simulation and, in turn, the effect of the date of the first day of the model simulation. While the start times of the simulations were different, the simulation results with different start times were nearly consistent after a spin-up time period, and the results revealed that the spin-up time was approximately 27 h. For the continuous simulation test, the CT12 and CT24 sensitivity experiments were conducted. The start times of the intercepted time periods for CT12 and R1120 were the same, and the simulation results were almost identical. Based on the simulation results, CT24 showed the best performance of all of the sensitivity experiments, with the correlation coefficient (R), MB, and IOA reaching 0.81, 6.29 µg m−3, and 0.90 respectively. For the emission tests, an updated local emission inventory with construction fugitive dust emissions was added and was compared with the simulation results from the original emission inventory. The simulation with the updated local emissions showed much better performance for PM2.5 modelling. Therefore, combining the CT24 method and the updated local emission inventory can satisfactorily improve the PM2.5 model performance in Xi'an: the absolute MB decreased from 35.16 to 6.29 µg m−3, and the IOA reached 0.90.