Energies (Aug 2018)

Short-Term Load Forecasting of Natural Gas with Deep Neural Network Regression †

  • Gregory D. Merkel,
  • Richard J. Povinelli,
  • Ronald H. Brown

DOI
https://doi.org/10.3390/en11082008
Journal volume & issue
Vol. 11, no. 8
p. 2008

Abstract

Read online

Deep neural networks are proposed for short-term natural gas load forecasting. Deep learning has proven to be a powerful tool for many classification problems seeing significant use in machine learning fields such as image recognition and speech processing. We provide an overview of natural gas forecasting. Next, the deep learning method, contrastive divergence is explained. We compare our proposed deep neural network method to a linear regression model and a traditional artificial neural network on 62 operating areas, each of which has at least 10 years of data. The proposed deep network outperforms traditional artificial neural networks by 9.83% weighted mean absolute percent error (WMAPE).

Keywords