Journal of Petroleum Exploration and Production Technology (Mar 2021)

Experimental investigation of proppant clustering in intersected fractures

  • Wenpei Ma,
  • Ingrid Tomac

DOI
https://doi.org/10.1007/s13202-021-01122-4
Journal volume & issue
Vol. 11, no. 4
pp. 1727 – 1742

Abstract

Read online

Abstract This paper investigates the dynamics of proppant agglomerations during flow and transport within fractures intersected at the angles typical for the joint of pre-existing and newly formed fractures. The study considers variations and coupling of fluid flow rates, proppant volumetric concentrations, fluid dynamic viscosities and fracture intersection angles. Proppants are widely used during hydraulic fracturing to keep fractures open and enhance reservoir permeability. This study uses plexiglas experimental slots and visual analysis for identifying particle displacements. Geo-Particle Image Velocimetry–Reliability-Guided (GeoPIV-RG) method tracks particle movements among images by comparing the reference and subsequent snapshots at the point and time of interest. Results of this study show that the proppant volumetric concentration and the fluid flow rate are closely correlated with each other for affecting proppant flow, transport, and agglomeration formation. Increasing the proppant volumetric concentration generally promotes particle agglomeration, with different extent when coupled with the fluid flow rate. Proppant volumetric concentration affects the size, shape, and distribution of particle clusters. Increasing the fluid flow rate increases the occurrence of particle agglomerates at low proppant volumetric concentration; however, this trend is absent under high proppant volumetric concentrations. Sizes and shapes of proppant agglomerates change as the fluid flow rate changes. Changes of fracture intersection angle minimally affect shape, size and distance between proppant agglomerates and clusters. Furthermore, increasing the fluid dynamic viscosity strongly promotes proppant agglomeration. Although fluid dynamic viscosity changes do not affect the shape and size of particle clusters, the distance between adjacent clusters decreases at higher fluid dynamic viscosity.

Keywords