Stroke: Vascular and Interventional Neurology (Nov 2021)
Abstract 1122‐000047: Machine Learning to Predict Stroke Outcomes after Mechanical Thrombectomy
Abstract
Introduction: Prognostication is an integral part of clinical decision‐making in stroke care. Machine learning (ML) methods have gained increasing popularity in the medical field due to their flexibility and high performance. Using a large comprehensive stroke center registry, we sought to apply various ML techniques for 90‐day stroke outcome predictions after thrombectomy. Methods: We used individual patient data from our prospectively collected thrombectomy database between 09/2010 and 03/2020. Patients with anterior circulation strokes (Internal Carotid Artery, Middle Cerebral Artery M1, M2, or M3 segments and Anterior Cerebral Artery) and complete records were included. Our primary outcome was 90‐day functional independence (defined as modified Rankin Scale score 0–2). Pre‐ and post‐procedure models were developed. Four known ML algorithms (support vector machine, random forest, gradient boosting, and artificial neural network) were implemented using a 70/30 training‐test data split and 10‐fold cross‐validation on the training data for model calibration. Discriminative performance was evaluated using the area under the receiver operator characteristics curve (AUC) metric. Results: Among 1248 patients with anterior circulation large vessel occlusion stroke undergoing thrombectomy during the study period, 1020 had complete records and were included in the analysis. In the training data (n = 714), 49.3% of the patients achieved independence at 90‐days. Fifteen baseline clinical, laboratory and neuroimaging features were used to develop the pre‐procedural models, with four additional parameters included in the post‐procedure models. For the preprocedural models, the highest AUC was 0.797 (95%CI [0.75‐ 0.85]) for the gradient boosting model. Similarly, the same ML technique performed best on post‐procedural data and had an improved discriminative performance compared to the pre‐procedure model with an AUC of 0.82 (95%CI [0.77‐ 0.87]). Conclusions: Our pre‐and post‐procedural models reliably estimated outcomes in stroke patients undergoing thrombectomy. They represent a step forward in creating simple and efficient prognostication tools to aid treatment decision‐making. A web‐based platform and related mobile app are underway.
Keywords