Molecules (Nov 2024)

Bis(tricyclic) Aromatic Enes That Exhibit Efficient Fluorescence in the Solid State

  • Masaki Shimizu,
  • Kenta Nishimura,
  • Mizuki Mineyama,
  • Rin Terao,
  • Tsuneaki Sakurai,
  • Hiroshi Sakaguchi

DOI
https://doi.org/10.3390/molecules29225361
Journal volume & issue
Vol. 29, no. 22
p. 5361

Abstract

Read online

We report herein that bis(tricyclic) aromatic enes (BAEs) consisting of 6-6-6-membered frameworks such as acridine, xanthene, thioxanthene, and thioxanthene-S,S-dioxide act as a new class of organic luminophores that exhibit blue-to-green fluorescence in the solid state and in polymer film with good to excellent quantum yields. The BAEs were prepared by the palladium-catalyzed double cross-coupling reaction of phenazastannines or 10,10-dimethyl-10H-phenothiastannin with 9-(dibromomethylene)xanthene, 9-(dibromomethylene)thioxanthene, or 9-(dibromomethylene)-9H-thioxanthene-10,10-dioxide. Microcrystals or powder samples of the BAEs exhibited brilliant fluorescence with good to high quantum yields (Φ = 0.45–0.88). Furthermore, more efficient emission of blue-to-green light (Φ = 0.59–0.91) was observed for the BAEs dispersed in the poly(methyl methacrylate) (PMMA) films. Density functional theory (DFT) calculations suggest that the photo-absorption of the (thio)xanthene moiety-containing BAEs proceeds via π–π* transitions, whereas the optical excitation of 10,10-dioxido-9H-thioxanthene moiety-containing BAEs involves an intramolecular charge transfer from the acridine/thioxanthene part to the electron-accepting 10,10-dioxido-9H-thioxanthene moiety.

Keywords