Polymers (Apr 2021)

Characterization of Epigallocatechin-Gallate-Grafted Chitosan Nanoparticles and Evaluation of Their Antibacterial and Antioxidant Potential

  • María J. Moreno-Vásquez,
  • Maribel Plascencia-Jatomea,
  • Saúl Sánchez-Valdes,
  • Judith C. Tanori-Córdova,
  • Francisco J. Castillo-Yañez,
  • Idania E. Quintero-Reyes,
  • Abril Z. Graciano-Verdugo

DOI
https://doi.org/10.3390/polym13091375
Journal volume & issue
Vol. 13, no. 9
p. 1375

Abstract

Read online

Nanoparticles based on chitosan modified with epigallocatechin gallate (EGCG) were synthetized by nanoprecipitation (EGCG-g-chitosan-P). Chitosan was modified by free-radical-induced grafting, which was verified by Fourier transform infrared (FTIR). Furthermore, the morphology, particle size, polydispersity index, and zeta potential of the nanoparticles were investigated. The grafting degree of EGCG, reactive oxygen species (ROS) production, antibacterial and antioxidant activities of EGCG-g-chitosan-P were evaluated and compared with those of pure EGCG and chitosan nanoparticles (Chitosan-P). FTIR results confirmed the modification of the chitosan with EGCG. The EGCG-g-chitosan-P showed spherical shapes and smoother surfaces than those of Chitosan-P. EGCG content of the grafted chitosan nanoparticles was 330 μg/g. Minimal inhibitory concentration (MIC) of EGCG-g-chitosan-P (15.6 μg/mL) was lower than Chitosan-P (31.2 μg/mL) and EGCG (500 μg/mL) against Pseudomonas fluorescens (p p p < 0.05) in 2,2′-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and ferric-reducing antioxidant power assays. Based on the above results, EGCG-g-chitosan-P shows the potential for food packaging and biomedical applications.

Keywords