Scientific Reports (Apr 2023)
Enriched environment exposure during development positively impacts the structure and function of the visual cortex in mice
Abstract
Abstract Optimal conditions of development have been of interest for decades, since genetics alone cannot fully explain how an individual matures. In the present study, we used optical brain imaging to investigate whether a relatively simple enrichment can positively influence the development of the visual cortex of mice. The enrichment paradigm was composed of larger cages housing multiple mice that contained several toys, hiding places, nesting material and a spinning wheel that were moved or replaced at regular intervals. We compared C57BL/6N adult mice (> P60) that had been raised either in an enriched environment (EE; n = 16) or a standard (ST; n = 12) environment from 1 week before birth to adulthood, encompassing all cortical developmental stages. Here, we report significant beneficial changes on the structure and function of the visual cortex following environmental enrichment throughout the lifespan. More specifically, retinotopic mapping through intrinsic signal optical imaging revealed that the size of the primary visual cortex was greater in mice reared in an EE compared to controls. In addition, the visual field coverage of EE mice was wider. Finally, the organization of the cortical representation of the visual field (as determined by cortical magnification) versus its eccentricity also differed between the two groups. We did not observe any significant differences between females and males within each group. Taken together, these data demonstrate specific benefits of an EE throughout development on the visual cortex, which suggests adaptation to their environmental realities.