Oceans (Mar 2024)
Effects of Food Concentration and Light Intensity on the Growth of a Model Coral
Abstract
Since reef-building corals rely on both heterotrophy and endosymbiotic dinoflagellate autotrophy to meet their metabolic needs, it is necessary to consider both food supply and light levels, respectively, when optimizing their cultivation ex situ. Herein nubbins of the model reef coral Pocillopora acuta cultured in recirculating aquaculture systems at photosynthetically active radiation levels of 370 or 670 μmol quanta m−2 s−1 were fed Artemia nauplii at concentrations of either 33 or 78 individuals mL−1 in a separate feeding tank for 6 hr in the dark thrice weekly. A subset of nubbins was experimentally wounded at the outset of the 84-day experiment to assess recovery, and 100% fully healed within 2–4 weeks. All cultured corals survived, and unwounded corals (1) grew at a specific growth rate approaching 0.5% day−1 and (2) demonstrated a mean total linear extension of 0.2% day−1 (~6–8 cm year−1); these are far higher than growth rates normally documented in situ. In the feeding tank, corals tolerated nitrate levels up to 25 mg L−1, but once concentrations reached 50 mg L−1 by day 84, tissue necrosis began to occur in nubbins of one tank. This highlights the importance of feeding in separate tanks during long-term culture of corals, and bio-filtration could reduce the possibility of organic matter accumulation in future coral culture studies.
Keywords