Genetics Selection Evolution (May 2005)

Identification and characterization of single nucleotide polymorphisms in 12 chicken growth-correlated genes by denaturing high performance liquid chromatography

  • Yang Guanfu,
  • Zeng Hua,
  • Ouyang Jianhua,
  • Lei Mingming,
  • Nie Qinghua,
  • Zhang Xiquan

DOI
https://doi.org/10.1186/1297-9686-37-4-339
Journal volume & issue
Vol. 37, no. 3
pp. 339 – 360

Abstract

Read online

Abstract The genes that are part of the somatotropic axis play a crucial role in the regulation of growth and development of chickens. The identification of genetic polymorphisms in these genes will enable the scientist to evaluate the biological relevance of such polymorphisms and to gain a better understanding of quantitative traits like growth. In the present study, 75 pairs of primers were designed and four chicken breeds, significantly differing in growth and reproduction characteristics, were used to identify single nucleotide polymorphisms (SNP) using the denaturing high performance liquid chromatography (DHPLC) technology. A total of 283 SNP were discovered in 31 897 base pairs (bp) from 12 genes of the growth hormone (GH), growth hormone receptor (GHR), ghrelin, growth hormone secretagogue receptor (GHSR), insulin-like growth factor I and II (IGF-I and -II), insulin-like growth factor binding protein 2 (IGFBP-2), insulin, leptin receptor (LEPR), pituitary-specific transcription factor-1 (PIT-1), somatostatin (SS), thyroid-stimulating hormone beta subunit (TSH-β). The observed average distances in bp between the SNP in the 5'UTR, coding regions (non- and synonymous), introns and 3'UTR were 172, 151 (473 and 222), 89 and 141 respectively. Fifteen non-synonymous SNP altered the translated precursors or mature proteins of GH, GHR, ghrelin, IGFBP-2, PIT-1 and SS. Fifteen indels of no less than 2 bps and 2 poly (A) polymorphisms were also observed in 9 genes. Fifty-nine PCR-RFLP markers were found in 11 genes. The SNP discovered in this study provided suitable markers for association studies of candidate genes for growth related traits in chickens.

Keywords