Jurnal Teknologi Informasi dan Ilmu Komputer (Jul 2021)
Korelasi Antara Profil dan Nilai Akademis Siswa dengan Menggunakan Algoritma K-Means
Abstract
Hampir setiap pelajar di Indonesia terdaftar dengan atribut profil yang lengkap, seperti : Nama, Jenis Kelamin, Jenis Tinggal, Alat Transportasi, Usia Orangtua, Pendidikan Orangtua, Pekerjaan Orangtua, Penghasilan Orangtua dan atribut lainnya. Dari data atribut profil tersebut dapat diklasterisasi berdasarkan kedekatan nilai antara atribut yang dimiliki masing-masing siswa. Disisi lain siswa juga memiliki data yang berisi nilai akademis yang juga dapat dibuat klasterisasi. Data yang dipakai dalam penelitian ini melibatkan 512 instances yang didapat dari sebuah Sekolah Menengah Kejuruan (SMK) di Jakarta. Metode yang pakai untuk klasterisasi menggunakan algoritma K-Means. Penelitian ini akan mencari korelasi klasterisasi profil siswa terhadap nilai akademisnya. Tahapan penelitian diawali dengan persiapan dataset profil dan dataset nilai siswa, atribut dari dataset profil yang dipakai hanya atribut yang dianggap dapat merepresentasikan profil siswa dan keluarganya. Tahap berikutnya adalah mentrasformasi data atribut non numerik (kategorik dan interval) menjadi numerik. Dilanjutkan dengan tahap perhitungan jarak antar data dan tahap terakhir mencari pola korelasi antara klaster profil dan klaster nilai akademis yang terbentuk. Dengan metode elbow jumlah klaster yang paling ideal dalam penelitian ini adalah antara 3 dan 4 klaster, dimana nilai Silhoutte Coefficient tertinggi adalah 0,8103 untuk penglompokan 3 klaster. Abstract Almost every student in Indonesia is registered with complete profile attributes, such as: Name, Gender, Type of Stay, Transportation Equipment, Parents' Age, Parental Education, Parents' Work, Parents' Earnings and other attributes. From the profile attribute data it can be clustered based on the closeness of the values between the attributes possessed by each student. On the other hand students also have attribute data that contains academic values that can also be clustered. The data used in this study involved 512 instances obtained from a Vocational High School (SMK) in Jakarta. The method used for clustering is using the K-Means algorithm. This research will look for correlation of student profile clustering to its academic value. The stages of the research began with the preparation of the profile dataset and the student value dataset, the attributes of the profile dataset used were only those attributes that were considered to represent the profiles of students and their families. The next step is to transform non-numeric attribute data (categorical and interval) into numeric. Followed by the stage of calculating the distance between data and the final stage looking for patterns of correlation between profile clusters and academic value clusters that are formed. With the elbow method, the most ideal number of clusters in this study is between 3 and 4 clusters, where the highest Silhoutte Coefficient value is 0.8103 for grouping 3 clusters.