Frontiers in Immunology (Sep 2023)

Proteomic aptamer analysis reveals serum biomarkers associated with disease mechanisms and phenotypes of systemic sclerosis

  • Francesca Motta,
  • Francesca Motta,
  • Antonio Tonutti,
  • Antonio Tonutti,
  • Natasa Isailovic,
  • Angela Ceribelli,
  • Angela Ceribelli,
  • Giovanni Costanzo,
  • Giovanni Costanzo,
  • Stefano Rodolfi,
  • Stefano Rodolfi,
  • Carlo Selmi,
  • Carlo Selmi,
  • Maria De Santis,
  • Maria De Santis

DOI
https://doi.org/10.3389/fimmu.2023.1246777
Journal volume & issue
Vol. 14

Abstract

Read online

BackgroundSystemic sclerosis (SSc) is an autoimmune connective tissue disease that affects multiple organs, leading to elevated morbidity and mortality with limited treatment options. The early detection of organ involvement is challenging as there is currently no serum marker available to predict the progression of SSc. The aptamer technology proteomic analysis holds the potential to correlate SSc manifestations with serum proteins up to femtomolar concentrations.MethodsThis is a two-tier study of serum samples from women with SSc (including patients with interstitial lung disease - ILD - at high-resolution CT scan) and age-matched healthy controls (HC) that were first analyzed with aptamer-based proteomic analysis for over 1300 proteins. Proposed associated proteins were validated by ELISA first in an independent cohort of patients with SSc and HC, and selected proteins subject to further validation in two additional cohorts.ResultsThe preliminary aptamer-based proteomic analysis identified 33 proteins with significantly different concentrations in SSc compared to HC sera and 9 associated with SSc-ILD, including proteins involved in extracellular matrix formation and cell-cell adhesion, angiogenesis, leukocyte recruitment, activation, and signaling. Further validations in independent cohorts ultimately confirmed the association of specific proteins with early SSc onset, specific organ involvement, and serum autoantibodies.ConclusionsOur multi-tier proteomic analysis identified serum proteins discriminating patients with SSc and HC or associated with different SSc subsets, disease duration, and manifestations, including ILD, skin involvement, esophageal disease, and autoantibodies.

Keywords