Space: Science & Technology (Jan 2021)
Dynamic Simulation of Space Debris Cloud Capture Using the Tethered Net
Abstract
Space debris, especially the space debris cloud, has threatened severely the safety of future space missions. In the framework of multibody system dynamics, a computational approach is proposed in this study to investigate the dynamics of net deployment and capture of space debris cloud using this net subject to large overall motions and large deformations. To obtain high simulation fidelity of capturing space debris cloud, the gradient deficient beam element of the absolute nodal coordinate formulation (ANCF) is employed to discretize threads which are woven into the net. The normal contact force between the net and the debris cloud and among debris particles is computed by using the penalty method. Some deployment examples are presented to investigate the influences of shooting velocity of bullets and microgravity as well as the angle between the traveling direction of the net and the microgravity direction on the deployment characteristics of the tethered net. Other capturing examples are given to clarify the effect of the deployment area of the net at the moment it starts to contact with the debris cloud on the capture rate and to demonstrate the effectiveness of the proposed approach for capturing space debris cloud using the net in microgravity conditions.