Materials (Jun 2024)

Corrosion Behavior of CMT Cladding Layer of AZ91 Magnesium Alloy Subjected to Friction Stir Processing

  • Yang Chen,
  • Junqi Shen,
  • Shengsun Hu,
  • Yahui Zhen,
  • Huichao Zhao

DOI
https://doi.org/10.3390/ma17122875
Journal volume & issue
Vol. 17, no. 12
p. 2875

Abstract

Read online

Friction stir processing (FSP) was performed on an AZ91 magnesium alloy cladding layer fabricated by a cold metal transfer (CMT) technique. Electrochemical properties and immersion corrosion behavior of the cladding layer before and after FSP in 3.5 wt.% NaCl solution were investigated. After applying the FSP, the corrosion potential and corrosion current density of the cladding layer increased from −1.455 V to −1.397 V and decreased from 4.135 μA/cm2 to 1.275 μA/cm2, respectively. The results of OM and SEM displayed the refinement of grains and the dispersion of β-Mg17Al12 second phase in the friction stir processed (FSPed) cladding layer and more severe corrosion of the unprocessed sample. The corrosion rate of the FSPed cladding layer was lower, and a more compact corrosion product film was formed on the surface of the FSPed cladding layer. EDS results and XRD patterns showed that the corrosion products was mainly composed of Mg(OH)2. The increase in Al content in the α-Mg matrix, grain refinement, and fragmentation and dispersion of the β-Mg17Al12 second phase induced by FSP were the main factors that led to the improvement in corrosion resistance of the cladding layer of the AZ91 magnesium alloy fabricated by CMT.

Keywords