Engineering and Technology Journal (Jan 2015)
Design of Intelligent Controller for Solar Tracking System Based on FPGA
Abstract
The needs for increasing the power generation make the use of solar cells plays an important role in the daily life. For this reason, it is important to use solar tracking system to increase or getting almost optimum amount from solar cells. In this paper, proposed intelligent controllers were designed and used to make solar cells facing the sun over the year. The proposed controller was trained by two ways; the first was trained by supervised feed forward neural network and the second by Particle Swarm Optimization (PSO) the results obtained for both designs are then compared. The controller was trained using MATLAB and then converted to SIMULINK model in order to test it, and convert it to a Very high speed integrated circuit Hardware Description Language (VHDL) language using MATLAB tool box in order to download it on Spartan 3A Field Programmable Gate Arrays (FPGAs) card. This makes the implementation of the intelligent controller more efficient and easy to use because of its reprogram-ability and the high speed performance. The controller was designed to a fully controlled DC motor driver which is used to rotate two DC motors in X-axis and Y-axis directions respectively. The experimental results show that tracking sun increases the efficiency of the system to produce energy from solar cell about 44.3778 % more energy than the solar cell without tracking system.