EPJ Web of Conferences (Feb 2012)

Analysis of statistical model properties from discrete nuclear structure data

  • Firestone Richard B.

DOI
https://doi.org/10.1051/epjconf/20122104007
Journal volume & issue
Vol. 21
p. 04007

Abstract

Read online

Experimental M1, E1, and E2 photon strengths have been compiled from experimental data in the Evaluated Nuclear Structure Data File (ENSDF) and the Evaluated Gamma-ray Activation File (EGAF). Over 20,000 Weisskopf reduced transition probabilities were recovered from the ENSDF and EGAF databases. These transition strengths have been analyzed for their dependence on transition energies, initial and final level energies, spin/parity dependence, and nuclear deformation. ENSDF BE1W values were found to increase exponentially with energy, possibly consistent with the Axel-Brink hypothesis, although considerable excess strength observed for transitions between 4-8 MeV. No similar energy dependence was observed in EGAF or ARC data. BM1W average values were nearly constant at all energies above 1 MeV with substantial excess strength below 1 MeV and between 4-8 MeV. BE2W values decreased exponentially by a factor of 1000 from 0 to 16 MeV. The distribution of ENSDF transition probabilities for all multipolarities could be described by a lognormal statistical distribution. BE1W, BM1W, and BE2W strengths all increased substantially for initial transition level energies between 4-8 MeV possibly due to dominance of spin-flip and Pygmy resonance transitions at those excitations. Analysis of the average resonance capture data indicated no transition probability dependence on final level spins or energies between 0-3 MeV. The comparison of favored to unfavored transition probabilities for odd-A or odd-Z targets indicated only partial support for the expected branching intensity ratios with many unfavored transitions having nearly the same strength as favored ones. Average resonance capture BE2W transition strengths generally increased with greater deformation. Analysis of ARC data suggest that there is a large E2 admixture in M1 transitions with the mixing ratio δ ≈ 1.0. The ENSDF reduced transition strengths were considerably stronger than those derived from capture gamma ray data implying that those data are strongly biased by favored, unhindered transitions.