Journal of Materials Research and Technology (Nov 2023)
Determination of tensile strength and fracture toughness of nuclear graphite and prediction of its structural failures
Abstract
The fracture properties of nuclear graphite and their effects on the structural failure process threaten the integrity and safety of High Temperature Gas-cooled Reactor structures. This study aims to develop close-form solutions to determine the size-independent tensile strength and fracture toughness of graphite from small-sized specimens, and thus to predict its structural failure behaviors. Firstly, the scale coefficient and dispersion coefficient are introduced to reflect the heterogeneity of graphite; these are estimated to be 21.0 and 16.8, respectively, in accordance with the meso-structural characteristics and macro-mechanical responses of the graphite. The fracture parameters of geometrically non-similar IG-11 graphite specimens are statistically analyzed with a normal distribution to determine the true fracture toughness and tensile strength, in the form of analytical solutions. Thus, a complete fracture failure curve is constructed to evaluate its fracture behavior. Then, the proposed method is employed to obtain the fracture responses of geometrically similar IG-11 graphite specimens. Good consistency in the calculation results of two types of specimens are observed, verifying the accuracy and size-independence (including absolute and relative sizes) of the proposed method for determining the fracture parameters of graphite. Finally, the structural failure loads of IG-11 and IG-110U graphite specimens with different sizes are predicted within an error margin of 15%. The minimum size requirements of graphite specimens satisfying the condition of linear elastic fracture mechanics are discussed, and the relationship between the fracture behavior of small-sized graphite specimens in the laboratory and the structural failure of actual large-sized graphite members is established.